刷题首页
题库
高中数学
题干
已知椭圆
的短轴端点到右焦点
的距离为2.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线交椭圆
于
两点,交直线
于点
,若
,
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2017-11-18 12:38:45
答案(点此获取答案解析)
同类题1
如图,已知圆
,点
是圆
内一个定点,
是圆
上任意-一点,线段
的垂直平分线
和半径
相交于点
,连接
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若
、
是曲线
上关于原点对称的两个点,点
是曲线
.上任意-一点(不同于点
、
),当直线
、
的斜率都存在时,记它们的斜率分别为
、
,求证:
的为定值.
同类题2
已知定点
、
,直线
、
相交于点
,且它们的斜率之积为
,记动点
的轨迹为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)设直线
与曲线
交于
、
两点,若直线
与
斜率之积为
,求证:直线
过定点,并求定点坐标.
同类题3
已知点
在椭圆
:
上,
为坐标原点,直线
:
的斜率与直线
的斜率乘积为
(1)求椭圆
的方程;
(2)不经过点
的直线
:
(
且
)与椭圆
交于
,
两点,
关于原点的对称点为
(与点
不重合),直线
,
与
轴分别交于两点
,
,求证:
.
同类题4
已知圆
:
,点
,
,点
在圆
上运动,
的垂直平分线交
于点
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设
分别是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,若
,
为坐标原点,求直线
的斜率
;
(Ⅲ)过点
,
且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题