刷题首页
题库
高中数学
题干
已知椭圆
的右准线方程为
,又离心率为
,椭圆的左顶点为
,上顶点为
,点
为椭圆上异于
任意一点.
(1)求椭圆的方程;
(2)若直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-08 07:02:17
答案(点此获取答案解析)
同类题1
阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆
C
的焦点在
x
轴上,且椭圆
C
的离心率为
,面积为12
,则椭圆
C
的方程为( ).
A.
B.
C.
D.
同类题2
已知
是椭圆
的两个焦点,
是椭圆
上一点,当
时,有
.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点
的动直线
与椭圆交于
两点,试问在
铀上是否存在与
不重合的定点
,使得
恒成立?若存在,求出定点
的坐标,若不存在,请说明理由.
同类题3
已知
,
分别是椭圆
:
的左、右焦点,
,
分别是椭圆
的左、右顶点,
,且
(其中
为坐标原点)的中点坐标为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知动直线
与椭圆
相交于
,
两点,已知点
,求证:
是定值.
同类题4
如图,已知
、
分别是椭圆
的左、右焦点,
是椭圆
的上顶点,点
在
轴负半轴上,满足
是
的中点,且
.
(1)求椭圆
的离心率;
(2)若
的外接圆恰好与直线
相切,求椭圆
的方程.
同类题5
给定椭圆
,称圆心在原点
,半径为
的圆是椭圆
C
的“准圆”.若椭圆
C
的一个焦点为
,其短轴上的一个端点到F的距离为
.
(I)求椭圆
C
的方程和其“准圆”方程;
(II )点
P
是椭圆
C
的“准圆”上的一个动点,过点
P
作直线
,使得
与椭圆
C
都只有一个交点,且
分别交其“准圆”于点
M
,
N
.
(1)当
P
为“准圆”与
轴正半轴的交点时,求
的方程;
(2)求证:|
MN
|为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题