刷题首页
题库
高中数学
题干
如下图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
,已知点
和
都在椭圆上,其中
为椭圆的离心率.
(1)求椭圆的方程;
(2)设
,
是椭圆上位于
轴上方的两点,且直线
与直线
平行,
与
交于点
,
(i)若
,求直线
的斜率;
(ii)求证:
是定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-08 09:52:15
答案(点此获取答案解析)
同类题1
已知椭圆
C
的中心在坐标原点,焦点在
x
轴上,左顶点为
A
,左焦点为
,点
在椭圆
C
上,直线
与椭圆
C
交于
E
,
F
两点,直线
AE
,
AF
分别与
y
轴交于点
M
,
N
Ⅰ
求椭圆
C
的方程;
Ⅱ
在
x
轴上是否存在点
P
,使得无论非零实数
k
怎样变化,总有
为直角?若存在,求出点
P
的坐标,若不存在,请说明理由.
同类题2
已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.
求椭圆
和抛物线
的方程;
设点
P
为抛物线
准线上的任意一点,过点
P
作抛物线
的两条切线
PA
,
PB
,其中
A
,
B
为切点.
设直线
PA
,
PB
的斜率分别为
,
,求证:
为定值;
若直线
AB
交椭圆
于
C
,
D
两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
同类题3
已知椭圆
(
)的两个焦点
,
,点
在此椭圆上.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,记直线
的斜率分别为
,求证:
为定值.
同类题4
在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆
C
经过点
M
(2,1),
N
(
,-
).
(1)求椭圆
C
的标准方程;
(2)经过点
M
作倾斜角互补的两条直线,分别与椭圆
C
相交于异于
M
点的
A
,
B
两点,求直线
AB
的斜率.
同类题5
已知椭圆
:
的一个焦点为
,离心率为
.
(1)求
的标准方程;
(2)若动点
为
外一点,且
到
的两条切线相互垂直,求
的轨迹
的方程;
(3)设
的另一个焦点为
,过
上一点
的切线与(2)所求轨迹
交于点
,
,求证:
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题