刷题首页
题库
高中数学
题干
已知椭圆
(
)经过
与
两点.
(1)求椭圆
的方程;
(2)过原点的直线
与椭圆
交于
两点,椭圆
上一点
满足
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2017-04-16 02:47:51
答案(点此获取答案解析)
同类题1
已知椭圆
,四点
,
,
,
,恰有三点在椭圆
上.
(1)求
的方程;
(2)设
、
为椭圆
在左、右焦点,
是椭圆在第一象限上一点,满足
,求
面积的最大值.
同类题2
已知椭圆
的离心率为
是椭圆上一点.
(1)求椭圆的标准方程;
(2)过椭圆右焦点
的直线与椭圆交于
两点,
是直线
上任意一点.
证明:直线
的斜率成等差数列.
同类题3
在平面直角坐标系
中,已知椭圆
(
)的焦距为
,且过点
.
(1)求椭圆
的方程;
(2)斜率大于0且过椭圆右焦点
的直线
与椭圆
交于
两点,若
,求直线
的方程.
同类题4
如图,已知椭圆
:
,左顶点为
,经过点
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
(1)求椭圆
的方程;
(2)已知
为
的中点,
,证明:对于任意的
都有
恒成立;
(3)若过点
作直线
的平行线交椭圆
于点
,求
的最小值.
同类题5
已知椭圆
,离心率
,点
在椭圆上.
(1)求椭圆C的标准方程;
(2)设点P是椭圆C上一点,左顶点为A,上顶点为B,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题