刷题首页
题库
高中数学
题干
设椭圆
的离心率
,左顶点
到直线
的距离
,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
相交于
两点,若以
为直径的圆经过坐标原点,证明:点
到直线
的距离为定值;
(III)在(Ⅱ)的条件下,试求
的面积
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2015-02-05 07:23:15
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
(
)经过点
,离心率为
.
(1)求椭圆
C
的方程;
(2)设
O
为原点,直线
l
:
(
)与椭圆
C
交于两个不同点
P
、
Q
,直线
AP
与
x
轴交于点
M
,直线
AQ
与
x
轴交于点
N
,若
,求证:直线
l
经过定点.
同类题2
已知椭圆
的离心率为
,左、右焦点分别为
,抛物线
的焦点F恰好是该椭圆的一个顶点.
(1)求椭圆C的方程;
(2)已知圆
的切线
与椭圆相交于A,B两点,那么以AB为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.
同类题3
已知椭圆
的离心率为
,定点
,椭圆短轴的端点是
、
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
同类题4
如图,在平面直角坐标系
xOy
中,椭圆
的左、右焦点分别为
F
1
,
F
2
,离心率为
,两准线之间的距离为8.点
P
在椭圆
E
上,且位于第一象限,过点
F
1
作直线
PF
1
的垂线
l
1
,过点
F
2
作直线
PF
2
的垂线
l
2
.
(1)求椭圆E的标准方程;
(2)若直线
l
1
,
l
2
的交点
Q
在椭圆E上,求点
P
的坐标.
同类题5
已知椭圆
的离心率为
,短半轴长为1.
(1)求椭圆
的方程;
(2)设椭圆
的短轴端点分别为
,点
是椭圆
上异于点
的一动点,直线
分别与直线
于
两点,以线段
为直径作圆
.
①当点
在
轴左侧时,求圆
半径的最小值;
②问:是否存在一个圆心在
轴上的定圆与圆
相切?若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题