刷题首页
题库
高中数学
题干
已知圆
,点
,点
是圆
上任意一点,线段
的中垂线与
交于点
.
(Ⅰ)求点
的轨迹
的方程.
(Ⅱ)斜率不为0的动直线
过点
且与轨迹
交于
,
两点,
为坐标原点.是否存在常数
,使得
为定值?若存在,求出这个定值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-02 04:32:59
答案(点此获取答案解析)
同类题1
已知
的周长为
,
,则顶点
的轨迹方程为( )
A.
B.
C.
D.
同类题2
(Ⅰ)一动圆与圆
相外切,与圆
相内切求动圆圆心的轨迹曲线
的方程,并说明它是什么曲线;
(Ⅱ)过点
作一直线
与曲线
交与
两点,若
,求此时直线
的方程.
同类题3
在平面直角坐标系
xOy
中,
O
为坐标原点,点
,
,
Q
为平面上的动点,且
,线段
的中垂线与线段
交于点
P
.
求
的值,并求动点
P
的轨迹
E
的方程;
若直线
l
与曲线
E
相交于
A
,
B
两点,且存在点
其中
A
,
B
,
D
不共线
,使得
,证明:直线
l
过定点.
同类题4
已知
,
是平面上的两个定点,动点
满足
.
(1)求动点
的轨迹方程;
(2)若直线
与(1)中的轨迹相交于不同的两点
,
为坐标原点,求
面积的最大值和此时直线
的方程.
同类题5
:
的圆心为
,
:
的圆心为
,一动圆与圆
内切,与圆
外切.
(1)求动圆圆心
的轨迹
的方程;
(2)直线
过
与(1)中所求轨迹
交于
、
不同两点,
点关于
轴对称点为点
,直线
是否恒过定点,若过定点求出该点坐标,否则,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中的定值问题