刷题首页
题库
高中数学
题干
已知椭圆
:
,其离心率为
,以原点为圆心,椭圆的短轴长为直径的圆被直线
截得的弦长等于
.
(1)求椭圆
的方程;
(2)设
为椭圆
的左顶点,过点
的直线
与椭圆的另一个交点为
,与
轴相交于点
,过原点与
平行的直线与椭圆相交于
两点,问是否存在常数
,使
恒成立?若存在,求出
;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-02 03:44:56
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系
中,椭圆E:
的离心率为
,直线l:
与椭圆E相交于A,B两点,
,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.
(1)求a,b的值;
(2)求证:直线MN的斜率为定值.
同类题2
已知椭圆
的离心率为
,若椭圆与圆
:
相交于M,N两点,且圆E在椭圆内的弧长为
.
(1)求椭圆的方程;
(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:
为定值.
同类题3
已知椭圆
上有一个顶点到两个焦点之间的距离分别为
,
.
(1)求椭圆的方程;
(2)如果直线
与椭圆相交于
,若
,证明直线
与直线
的交点
必在一条确定的双曲线上;
(3)过点
作直线
(与
轴不垂直)与椭圆交于
两点,与
轴交于点
,若
,
,证明:
为定值.
同类题4
设椭圆
的左焦点为
,上顶点为
.已知椭圆的短轴长为4,离心率为
.
(1)求椭圆的方程;
(2)设点
在椭圆上,且异于椭圆的上、下顶点,点
为直线
与
轴的交点,点
在
轴的负半轴上.若
(
为原点),且
,求证:直线
的斜率与直线
MN
的斜率之积为定值.
同类题5
已知
、
分别是直线
和
上的两个动点,线段
的长为
,
是
的中点.
(1)求动点
的轨迹
的方程;
(2)过点
任意作直线
(与
轴不垂直),设
与(1)中轨迹
交于
两点,与
轴交于
点.若
,
,证明:
为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题