刷题首页
题库
高中数学
题干
已知椭圆
C
:
的右焦点为
,离心率
.
(1)求椭圆
C
的标准方程;
(2)已知动直线
l
过点
F
,且与椭圆
C
交于
A
,
B
两点,试问
x
轴上是否存在定点
M
,使得
恒成立?若存在,求出点
M
的坐标,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-06 09:43:16
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,以
为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知点
和平面内一点
,过点
任作直线
与椭圆
相交于
,
两点,设直线
,
,
的斜率分别为
,
,
,
,试求
,
满足的关系式.
同类题2
给定椭圆
C
:
(
),称圆心在原点
O
,半径为
的圆是椭圆
C
的“卫星圆”.若椭圆
C
的离心率
,点
在
C
上.
(1)求椭圆
C
的方程和其“卫星圆”方程;
(2)点
P
是椭圆
C
的“卫星圆”上的一个动点,过点
P
作直线
,
使得
,与椭圆
C
都只有一个交点,且
,
分别交其“卫星圆”于点
M
,
N
,证明:弦长
为定值.
同类题3
已知椭圆C的左、右焦点坐标分别是 (
,0), (
,0),离心率是
,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标.
同类题4
已知椭圆M:
(a>b>0)的一个焦点为F(﹣1,0),离心率
,左右顶点分别为A、B,经过点F的直线l与椭圆M交于C、D两点(与A、B不重合).
(1)求椭圆M的方程;
(2)记△ABC与△ABD的面积分别为S
1
和S
2
,求|S
1
﹣S
2
|的最大值,并求此时l的方程.
同类题5
设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题