刷题首页
题库
高中数学
题干
已知中心在原点
,焦点在
轴上,离心率为
的椭圆过点
(1)求椭圆的方程;
(2)设不过原点
的直线
与该椭圆交于
两点,满足直线
的斜率依次成等比数列,求
面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-30 09:17:57
答案(点此获取答案解析)
同类题1
焦点在
y
轴上的椭圆
mx
2
+
y
2
=1的离心率为
,则
m
的值为( )
A.1
B.2
C.3
D.4
同类题2
已知椭圆
C
:
的离心率是
,右准线是
,下顶点
D
,点
,过点
E
的直线
斜率存在
交椭圆
C
于
A
、
B
两点
在
B
的左侧
.
求椭圆
C
标准方程;
求证:
的大小为定值;
若
的外接圆
M
与椭圆
C
在
A
处有相同的切线,求
的面积.
同类题3
椭圆
的离心率为
,则
的值为( )
A.-21
B.21
C.
或21
D.
或21
同类题4
已知椭圆
的离心率为
,左、右焦点分别是
、
以
为圆心、以3为半径的圆与以
为圆心、以1为半径的圆相交,交点在椭圆
上.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,点
是椭圆
的右顶点
直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
同类题5
已知椭圆
的离心率为
,直线
过点
,
,且与椭圆
相切于点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的动直线与曲线
相交于不同的两点
、
,曲线
在点
、
处的切线交于点
.试问:点
是否在某一定直线上,若是,试求出定直线的方程;否则,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程