刷题首页
题库
高中数学
题干
设椭圆C:
过点
,离心率为
.
(1)求椭圆C的方程;
(2)设斜率为1的直线
过椭圆C的左焦点且与椭圆C相交于A,B两点,求AB的中点M的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-27 11:14:08
答案(点此获取答案解析)
同类题1
如图,
,
是离心率为
的椭圆的左、右顶点,
,
是该椭圆的左、右焦点,
,
是直线
上两个动点,连接
和
,它们分别与椭圆交于点
,
两点,且线段
恰好过椭圆的左焦点
.当
时,点
恰为线段
的中点.
(1)求椭圆的方程;
(Ⅱ)判断以
为直径的圆与直线
位置关系,并加以证明.
同类题2
已知椭圆
的左、右焦点分别是
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
两个不同点,证明:直线
于
的交点在一条定直线上.
同类题3
已知椭圆
C
:
+
=1(
a
>
b
>0)的一个焦点是
F
(1,0),且离心率为
.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)设经过点
F
的直线交椭圆
C
于
M
,
N
两点,线段
MN
的垂直平分线交
y
轴于点
P
(0,
y
0
),求
y
0
的取值范围.
同类题4
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
同类题5
已知椭圆
的离心率为
,左、右焦点分别为
,
,且
,
:
与该椭圆有且只有一个公共点.
(1)求椭圆标准方程;
(2)过点
的直线
与
:
相切,且与椭圆相交于
,
两点,试探究
,
的数量关系.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆的中点弦