刷题首页
题库
高中数学
题干
已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
与以椭圆
的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于不同的两点
,若椭圆
的左焦点为
,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-10 10:38:20
答案(点此获取答案解析)
同类题1
如图,椭圆
的离心率
,且椭圆
C
的短轴长为
.
(1)求椭圆
的方程;
(2)设
椭圆
上的三个动点.
(i)若直线
过点D
,且
点是椭圆
的上顶点,求
面积的最大值;
(ii)试探究:是否存在
是以
为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.
同类题2
已知椭圆
的左,右焦点
,
,上顶点为
,
,
为椭圆上任意一点,且
的面积最大值为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若点
.
为椭圆
上的两个不同的动点,且
(
为坐标原点),则是否存在常数
,使得
点到直线
的距离为定值?若存在,求出常数
和这个定值;若不存在,请说明理由.
同类题3
设椭圆
的上、下焦点分别为
,
,右顶点为
.若
,则该椭圆的标准方程为__________.
同类题4
已知椭圆的中心在原点,焦点在
轴上,离心率为
,且过点P
.
(1)求椭圆的标准方程;
(2)已知斜率为1的直线l过椭圆的右焦点F交椭圆于
A.B两点,求弦AB的长.
同类题5
已知椭圆
的左、右焦点分别为
、
,椭圆的离心率为
,过椭圆
的左焦点
,且斜率为1的直线
,与以右焦点
为圆心,半径为
的圆
相切.
(1)求椭圆
的标准方程;
(2)线段
是椭圆
过右焦点
的弦,且
,求
的面积的最大值以及取最大值时实数
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程