刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆过点,右焦点是抛物线的焦点.
(1)求椭圆的方程;
(2)已知动直线过右焦点,且与椭圆分别交于,两点.试问轴上是否存在定点,使得恒成立?若存在求出点的坐标:若不存在,说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2019-06-17 08:43:21

答案(点此获取答案解析)

同类题1

已知椭圆的短轴长为4,上顶点A,左顶点B,焦点,分别是椭圆左右焦点,且的面积为,则椭圆的焦距为(   )
A.B.C.D.

同类题2

已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.

同类题3

已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若是椭圆上的两个动点,且的角平分线总垂直于轴,求证:直线的斜率为定值.

同类题4

已知椭圆的两个焦点为,离心率为.
(1)求椭圆的方程;
(2)设点是椭圆的右顶点,过点的直线与椭圆交于,两点,直线,与直线分别交于,两点.求证:点在以为直径的圆上.

同类题5

已知椭圆:经过点,离心率为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于,两点,为椭圆的左焦点,若,求直线的方程.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 椭圆中存在定点满足某条件问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)