刷题首页
题库
高中数学
题干
已知椭圆
的左右焦点分别为
,
,点
在椭圆上,且
求椭圆的方程;
过
作与x轴不垂直的直线
与椭圆交于B,C两点,求
面积的最大值及
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-15 11:55:51
答案(点此获取答案解析)
同类题1
已知椭圆C:
的长轴长为8,且经过点
求椭圆的方程;
是否存在过点
的直线l交椭圆于点R、T,且满足
,若存在,求出直线l的方程;若不存在,说明理由
同类题2
已如椭圆C:
的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设动直线
l
交椭圆
C
于
P
,
Q
两点,直线
OP
,
OQ
的斜率分别为
k
,
k
'
.若
,求证
△
OPQ
的面积为定值,并求此定值.
同类题3
如图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
,
为
椭圆上一点,且
垂直于
轴,连结
并延长交椭圆于另一点
,设
.
(1)若点
的坐标为
,求椭圆
的方程及
的值;
(2)若
,求椭圆
的离心率的取值范围.
同类题4
已知椭圆与双曲线
有相同的焦点坐标,且点
在椭圆上.
(1)求椭圆的标准方程;
(2)设
A
、
B
分别是椭圆的左、右顶点,动点
M
满足
,垂足为
B
,连接
AM
交椭圆于点
P
(异于
A
),则是否存在定点
T
,使得以线段
MP
为直径的圆恒过直线
BP
与
MT
的交点
Q
,若存在,求出点
T
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程