刷题首页
题库
高中数学
题干
已知点
为椭圆
的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线
与椭圆
有且仅有一个交点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与
轴交于
,过点
的直线与椭圆
交于两不同点
,
,若
,求实数
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-07-02 03:47:34
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,
分别是椭圆
的左、右顶点(如图所示),点
在椭圆的长轴
上运动,且
.设圆
是以点
为圆心,
为半径的圆.
(1)若
,圆
和椭圆在第一象限的交点坐标为
,求椭圆的方程;
(2)若椭圆的离心率为
,过点
作互相垂直的两条直线,交椭圆于P,Q两点,若直线PQ过点M,求m的值(用含
的代数式表示);
(3)当圆
与椭圆有且仅有点
一个交点时,求
的运动范围(用含
的代数式表示).
同类题2
已知椭圆
的离心率
,原点到过点
,
的直线的距离是
.
(1)求椭圆
的方程;
(2)如果直线
交椭圆
于不同的两点
,且
都在以
为圆心的圆上,求
的值.
同类题3
设椭圆
:
的左、右焦点分别为
,
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
的直线
与椭圆
相交于
,
两点,求
内切圆面积的最大值.
同类题4
已知
,椭圆
:
(
)的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为原点.
(I)求椭圆
的方程;
(Ⅱ)直线
经过点
,与椭圆交于
两点,若以
为直径的圆经过坐标原点
,求
.
同类题5
已知椭圆
E
:
过点(0,1)且离心率
.
(Ⅰ)求椭圆
E
的方程;
(Ⅱ)设动直线
l
与两定直线
l
1
:
x
﹣
y
=0和
l
2
:
x
+
y
=0分别交于
P
,
Q
两点.若直线
l
总与椭圆
E
有且只有一个公共点,试探究:△
OPQ
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围