刷题首页
题库
高中数学
题干
已知椭圆
经过点
,离心率为
,左右焦点分别为
,
.
(1)求椭圆的方程;
(2)若直线
:
与椭圆交于
,
两点,与以
为直径的圆交于
,
两点,且满足
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2014-06-23 08:08:04
答案(点此获取答案解析)
同类题1
椭圆
过点
,离心率为
,左右焦点分别为
,过点
的直线
交椭圆于
两点.
(1)求椭圆
的方程;
(2)当
的面积为
时,求直线
的方程.
同类题2
已知椭圆
的长轴长为4,过点
且斜率为
的直线交椭圆于
两点,且点
为线段
的中点
(1)求椭圆
的方程;
(2)设点
为坐标原点,过右焦点
的直线交椭圆于
两点,(
不在
轴上),求
面积
的最大值.
同类题3
如图,
分别是椭圆
的左、右焦点,且焦距为
,动弦
平行于
轴,且
.
(1)求椭圆
的方程;
(2)若点
是椭圆
上异于点
的任意一点,且直线
、
分别与
轴交于点
,若
、
的斜率分别为
,求证:
是定值.
同类题4
已知
分别是椭圆
的左、右焦点,椭圆的离心率
.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
有且只有一个公共点
,且与直线
相交于点
.求证:以线段
为直径的圆恒过定点
.
同类题5
已知椭圆
过点
,且离心率
(1)求椭圆
的标准方程
(2)是否存在过点
的直线
交椭圆与不同的两点
,且满足
(其中
为坐标原点)。若存在,求出直线
的方程;若不存在,请说明理由。
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围