刷题首页
题库
高中数学
题干
己知抛物线
的顶点在原点,焦点为
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)
是抛物线
上一点,过点
的直线交
于另一点
,满足
与
在点
处的切线垂直,求
面积的最小值,并求此时点
的坐标。
上一题
下一题
0.99难度 解答题 更新时间:2019-08-21 08:50:31
答案(点此获取答案解析)
同类题1
抛物线
的焦点与双曲线
的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.
同类题2
如图所示,在直角坐标系
中,点
到抛物线
的准线的距离为
.点
是
上的定点,
,
是
上的两动点,且线段
的中点
在直线
上.
(Ⅰ)求曲线
的方程及
的值;
(Ⅱ)记
,求
的最大值.
同类题3
已知抛物线
的焦点为
,
与抛物线
在第一象限的交点为
,且
是
( ).
A.6
B.4
C.2
D.1
同类题4
已知抛物线
的顶点在原点,焦点在
轴上,且抛物线上有一点
到焦点的距离为6.
(1)求该抛物线
的方程;
(2)已知抛物线上一点
,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点,并说明理由.
同类题5
已知
是抛物线
的焦点,恰好又是双曲线
的右焦点,双曲线
过点
,且其离心率为
.
(1)求抛物线
和双曲线
的标准方程;
(2)已知直线
过点
,且与抛物线
交于
,
两点,以
为直径作圆
,设圆
与
轴交于点
,
,求
的最大值.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据焦点或准线写出抛物线的标准方程
判断直线与抛物线的位置关系