刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,其中左焦点
.
(1)求出椭圆
的方程;
(2)若直线
与曲线
交于不同的
两点,且线段
的中点
在曲线
上,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 02:34:07
答案(点此获取答案解析)
同类题1
已知椭圆C的左、右焦点坐标分别是
,
,离心率是
,直线
与椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
同类题2
给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点.求证:
⊥
.
同类题3
已知椭圆
的中心在原点,一个焦点为
,且
经过点
.
(1)求
的方程;
(2)设
与
轴的正半轴交于点
,直线
:
与
交于
、
两点(
不经过
点),且
.证明:直线
经过定点,并求出该定点的坐标.
同类题4
在平面直角坐标系
,已知椭圆
的离心率
,直线
过椭圆
的右焦点
,且交椭圆
于
,
两点.
(1)求椭圆
的标准方程:
(2)已知点
,连结
,过点
作垂直于
轴的直线
,设直线
与直线
交于点
,试探索当
变化时,是否存在一条定直线
,使得点
恒在直线
上?若存在,请求出直线
的方程;若不存在,请说明理由.
同类题5
已知椭圆
过点
,离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆的上顶点作直线
交抛物线
于
两点,
为原点.
①求证:
;
②设
、
分别与椭圆相交于
、
两点,过原点
作直线
的垂线
,垂足为
,证明:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围