刷题首页
题库
高中数学
题干
椭圆
上一点
到两焦点距离之积为
,则当
取最大值时,
点是()
A.
和
B.
和
C.
和
D.
和
上一题
下一题
0.99难度 单选题 更新时间:2019-10-11 04:41:15
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)设与圆
O
:
相切的直线l交椭圆
C
于
A
,
B
两点(
O
为坐标原点),求△
AOB
面积
的最大值。
同类题2
已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点.
①证明:直线
的斜率依次成等比数列.
②若
与
关于
轴对称,证明:
.
同类题3
已知椭圆C:
(
)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当
最小时,求点T的坐标.
同类题4
已知F
1
,F
2
分别为椭圆C:
的左焦点.右焦点,椭圆上的点与F
1
的最大距离等于4,离心率等于
,过左焦点F的直线l交椭圆于M,N两点,圆E内切于三角形F
2
MN;
(1)求椭圆的标准方程
(2)求圆E半径的最大值
同类题5
已知椭圆
的左、右焦点分别为
,过点
且斜率为
的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.
(1)求椭圆的方程;
(2)椭圆的左、右顶点分为
A
,
B
,过右焦点
的直线
l
交椭圆于
P
,
Q
两点,求四边形
APBQ
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系