刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点分别是
,离心率
,
为椭圆上任意一点,且
的面积最大值为
.
(1)求椭圆
的方程.
(2)过焦点
的直线
与圆
相切于点
,交椭圆
于
两点,证明:
.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-01 09:19:22
答案(点此获取答案解析)
同类题1
已知
为椭圆
的右焦点,过椭圆长轴上一点
(不含端点)任意作一条直线
,交椭圆于
两点,且
(
为椭圆左焦点)周长的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作与
轴不重合的直线
和该椭圆交于
两点,椭圆的左顶点为
,且
两直线分别与直线
交于
两点,若
的斜率分别为
,试问
是否为定值?若是,求出定值;若不是,请说明理由.
同类题2
已知点
,
分别是椭圆
的左顶点和上顶点,
为其右焦点,
,且该椭圆的离心率为
;
(1)求椭圆
的标准方程;
(2)设点
为椭圆上的一动点,且不与椭圆顶点重合,点
为直线
与
轴的交点,线段
的中垂线与
轴交于点
,若直线
斜率为
,直线
的斜率为
,且
(
为坐标原点),求直线
的方程.
同类题3
设椭圆
:
的左顶点为
,右焦点为
,已知
.
(1)求椭圆
的方程;
(2)抛物线
与直线
交于
,
两点,直线
与椭圆
交于点
(异于点
),若直线
与
垂直,求
的值.
同类题4
已知椭圆
的左焦点为
,且椭圆上的点到点
的距离最小值为
.
(1)求椭圆的方程;
(2)已知经过点
的直线
与椭圆交于不同的两点
、
,且
,求直线
的方程.
同类题5
已知椭圆
(
)的离心率为
,点
在椭圆
上,直线
过椭圆的右焦点
且与椭圆相交于
两点.
(1)求
的方程;
(2)在
轴上是否存在定点
,使得
为定值?若存在,求出定点
的坐标,若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程