刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点分别是
,离心率
,
为椭圆上任意一点,且
的面积最大值为
.
(1)求椭圆
的方程.
(2)过焦点
的直线
与圆
相切于点
,交椭圆
于
两点,证明:
.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-01 09:19:22
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左顶点为
,右焦点为
,过点
且斜率为1的直线交椭圆
于另一点
,交
轴于点
,
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于
两点,连接
(
为坐标原点)并延长交椭圆
于点
,求
面积的最大值及取最大值时直线
的方程.
同类题2
已知椭圆
的右焦点为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)圆
的切线
与椭圆
相交于
、
两点,证明:
为钝角.
同类题3
已知椭圆
:
的离心率
,若椭圆的左、右焦点分别为
,
,椭圆上一动点
和
,
组成
的面积最大为
.
(1)求椭圆的方程;
(2)若存在直线
:
和椭圆相交于不同的两点
,
,且原点
与
,
连线的斜率之和满足:
.求直线
的斜率
的取值范围.
同类题4
已知椭圆
的上下两个焦点分别为
,过点
与
轴垂直的直线交椭圆
于
两点,
的面积为
,椭圆
的长轴长是短轴长的
倍.
(1)求椭圆
的标准方程;
(2)已知
为坐标原点,直线
与
轴交于点
,与椭园
交于
两个不同的点,若存在实数
,使得
,求
的取值范围,
同类题5
已知椭圆
的离心率为
,过焦点且垂直于长轴的直线被椭圆截得的弦长为
,过点
的直线与椭圆
相交于两点
(1)求椭圆
的方程;
(2)设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程