刷题首页
题库
初中数学
题干
我们定义:
如图1,在
中,把
绕点
顺时针旋转
得到
,把
绕点
逆时针旋转
得到
,连结
.当
时,我们称
是
的“旋补三角形”,
的边
上的中线
,叫做
的“旋补中线”,点
叫做“旋补中心”.
特例感知:
(1)在图2、图3中,
是
的“旋补三角形”,
是
的“旋补中线”.
①如图2,当
为等边三角形时,
与
的数量关系为
______
;
②如图3,当
,
时,则
长为______.
猜想论证:
(2)在图1中,当
为任意三角形时,猜想
与
的数量关系,并给予证明.
拓展应用:
(3)如图4,在四边形
中,
,
,
,
,
.试在四边形内部作
、
,使得
是
的“旋补三角形”,并求出
的“旋补中线”的长.
上一题
下一题
0.99难度 解答题 更新时间:2019-07-12 01:51:19
答案(点此获取答案解析)
同类题1
如图,已知:在矩形ABCD中,O为AC的中点,直线l经过点B,且直线l绕着点B旋转,AM⊥l于点M,CN⊥l于点N,连接OM,ON
(1)当直线l经过点D时,如图1,则OM、ON的数量关系为
;
(2)当直线l与线段CD交于点F时,如图2(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由;
(3)当直线l与线段DC的延长线交于点P时,请在图3中作出符合条件的图形,并判断(1)中的结论是否仍然成立?不必说明理由.
同类题2
探索与发现
探索:如图,在直角坐标系中,正方形ABCO的点B坐标(4,4),点A、C分别在y轴、x轴上,对角线AC上一动点E,连接BE,过E作DE⊥BE交OC于点
A.
(1)证明:BE=D
B.
小明给出的思路为:过E作y轴的平行线交AB、x轴于点F、H.请完善小明的证明过程.
(2)若点D坐标为(3,0),则点E坐标为
.
若点D坐标为(a,0),则点E坐标为
.
发现:在直角坐标系中,点B坐标(5,3),点D坐标(3,0),找一点E,使得△BDE为等腰直角三角形,直接写出点E坐标.
同类题3
如图
,大正方体上截去一个小正方体后,可得到图
的几何体.
设原大正方体的表面积为
,图
中几何体的表面积为
,那么
与
的大小关系是( )
、
、
、
、不确定
小明说:“设图
中大正方体各棱的长度之和为
,图
中几何体各棱的长度之和为
,那么
比
正好多出大正方体
条棱的长度.”若设大正方体的棱长为
,小正方体的棱长为
,请问
为何值时,小明的说法才正确?
如果截去的小正方体的棱长为大正方体棱长的一半,那么图
是图
中几何体的表面展开图吗?如有错误,请在图
中修正.
同类题4
如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以点A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为( )
A.16
B.15
C.14
D.13
同类题5
已知平行四边形ABCD,过点A作BC的垂线,垂足为点E,且满足AE=EC,过点C作AB的垂线,垂足为点F,交AE于点G,连接B
A.
(1)如图1,若AC=
,CD=4,求BC的长度;
(2)如图2取AC上一点Q,连接EQ,在△QEC内取一点,连接QH,EH,过点H作AC的垂线,垂足为点P,若QH=EH,∠QEH=45°.求证:AQ=2HP.
相关知识点
图形的性质
四边形
特殊的平行四边形
四边形综合
四边形其他综合问题