刷题首页
题库
初中数学
题干
已知:如图,△ABC,∠ACB=90°,AC=5,DE⊥BD,BC=BD,∠ABE=∠CB
A.
(1)求证:△ABC≌△EBD
(2)延长AC交DE于F点,若BC⊥BD,CF=4,求EF的长度.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-18 01:09:33
答案(点此获取答案解析)
同类题1
(1)如图①,点 M 是正方形 ABCD 的边 BC 上一点,点 N 是 CD 延长线上一点, 且BM=DN,则线段 AM 与 AN 的关系.
(2)如图②,在正方形 ABCD 中,点 E、F分别在边 BC、CD上,且∠EAF=45°,判断 BE,DF,EF 三条线段的数量关系,并说明理由.
(3)如图③,在四边形 ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边 BC、CD 上,且∠EAF=45°,若 BD=5,EF=3,求四边形 BEFD 的周长.
同类题2
如图,第1个正方形(设边长为2)的边为第一个等腰直角三角形的斜边,第一个等腰直角三角形的直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边……依此不断连接下去.通过观察与研究,写出第2008个正方形的边长a
2008
为( )
A.a
2008
=4
B.a
2008
=2
C.a
2008
=4
D.a
2008
=2
同类题3
如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.
(1)、求证:△ABE≌△ADF;
(2)、若等边△AEF的周长为6,求正方形ABCD的边长.
同类题4
如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.
(1)求证:∠APB=∠BPH.
(2)求证:AP+HC=PH.
(3)当AP=1时,求PH的长.
同类题5
如图,在边长为2的正方形
中,以
为边作等边
,连接
并延长交
于
,则
的长为( )
A.
B.
C.
D.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定求线段长