刷题首页
题库
高中数学
题干
设椭圆
:
的左,右焦点分别为
,
,以
为直径的圆与
在第一象限的交点为
,则直线
的斜率为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-11-22 05:18:43
答案(点此获取答案解析)
同类题1
有如下3个命题;
①双曲线
上任意一点
到两条渐近线的距离乘积是定值;
②双曲线
的离心率分别是
,则
是定值;
③过抛物线
的顶点任作两条互相垂直的直线与抛物线的交点分别是
,则直线
过定点;其中正确的命题有( )
A.3个
B.2个
C.1个
D.0个
同类题2
已知椭圆
的左右顶点是双曲线
的顶点,且椭圆
的上顶点到双曲线
的渐近线的距离为
.
(1)求椭圆
的方程;
(2)若直线
与
相交于
两点,与
相交于
两点,且
,求
的取值范围.
同类题3
(本小题满分13分)已知抛物线
的焦点为
,过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率
.
(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线
,切线
相交于点M.证明
;
(Ⅲ)椭圆E上是否存在一点
,经过点
作抛物线C的两条切线
(
为切点),使得直线
过点F?若存在,求出抛物线C与切线
所围成图形的面积;若不存在,试说明理由.
同类题4
已知椭圆
过点
.
(Ⅰ)求椭圆
的方程,并求其离心率;
(Ⅱ)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),直线
关于
的对称直线
与椭圆交于另一点
.设
为坐标原点,判断直线
与直线
的位置关系,并说明理由.
同类题5
已知抛物线
,点
(1)求点
与抛物线
的焦点
的距离;
(2)设斜率为
的直线
与抛物线
交于
两点,若
的面积为
,求直线
的方程;
(3)是否存在定圆
,使得过曲线
上任意一点
作圆
的两条切线,与曲线
交于另外两点
时,总有直线
也与圆
相切?若存在,求出
的值,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆上点到焦点的距离及最值