刷题首页
题库
高中数学
题干
已知椭圆
:
的左焦点为
,
为椭圆上一点,
交
轴于点
,且
为
的中点.
(1)求椭圆
的方程;
(2)直线
与椭圆
有且只有一个公共点
,平行于
的直线交
于
,交椭圆
于不同的两点
,
,问是否存在常数
,使得
,若存在,求出
的值,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-26 03:42:30
答案(点此获取答案解析)
同类题1
已知椭圆
的方程为
,双曲线
的左、右焦点分别是
的左、右顶点,而
的左、右顶点分别是
的左、右焦点.
(1)求双曲线
的方程;
(2)若直线
与双曲线C
2
恒有两个不同的交点A和B,求
的范围.
同类题2
已知直线
:
与直线
:
的距离为
,椭圆
:
的离心率为
.
(1)求椭圆
的标准方程;
(2)在(1)的条件下,抛物线
:
的焦点
与点
关于
轴上某点对称,且抛物线
与椭圆
在第四象限交于点
,过点
作抛物线
的切线,求该切线方程并求该直线与两坐标轴围成的三角形面积.
同类题3
已知椭圆
上有一个顶点到两个焦点之间的距离分别为
,
.
(1)求椭圆的方程;
(2)如果直线
与椭圆相交于
,若
,证明直线
与直线
的交点
必在一条确定的双曲线上;
(3)过点
作直线
(与
轴不垂直)与椭圆交于
两点,与
轴交于点
,若
,
,证明:
为定值.
同类题4
在平面直角坐标系
中,已知椭圆
:
(
)的离心率
且椭圆
上的点到点
的距离的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在椭圆
上,是否存在点
,使得直线
:
与圆
:
相交于不同的两点
、
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
同类题5
在平面直角坐标系
中,设中心在坐标原点,焦点在
轴上的椭圆
的左、右焦点分别为
,右准线
与
轴的交点为
,
.
(1)已知点
在椭圆
上,求实数
的值;
(2)已知定点
.
① 若椭圆
上存在点
,使得
,求椭圆
的离心率的取值范围;
② 如图,当
时,记
为椭圆
上的动点,直线
分别与椭圆
交于另一点
,若
且
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆