刷题首页
题库
初中数学
题干
如图,AE、BD是
的高,AE,BD交于点C,且AE=BE,BD平分
.
(1)求证:BC=2AD
(2)求
的度数.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-02 09:38:24
答案(点此获取答案解析)
同类题1
如图,点
在线段
上,
,
,
,
平分
.
(1)求证:
;
(2)试判断
和
的位置关系,并说明理由.
同类题2
如图,在平面直角坐标系中,已知点A的坐标为(15,0),点B的坐标为(6,12),点C的坐标为(0,6), 直线AB交y轴于点D, 动点P从点C出发沿着y轴正方向以每秒2个单位的速度运动, 同时,动点Q从点A出发沿着射线AB以每秒a个单位的速度运动设运动时间为t秒,
(1)求直线AB的解析式和CD的长.
(2)当△PQD与△BDC全等时,求a的值.
(3)记点P关于直线BC的对称点为
,连结
当t=3,
时, 求点Q的坐标.
同类题3
已知,将矩形ABCD折叠,使点C与点A重合,点D落在点G处,折痕为E
A.
(1)如图1,求证:BE=GF;
(2)如图2,连接CF、DG,若CE=2BE,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形都为等腰三角形
同类题4
如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.
同类题5
在正方形
ABCD
的外侧,作△
ADE
和△
DCF
,连接
AF
、
BE
.(友情提醒:正方形的四条边都相等,即
AB
=
BC
=
CD
=
DA
;四个内角都是90°,即∠
ABC
=∠
BCD
=∠
CDA
=∠
DAB
=90°)
(1)如图①,若△
ADE
和△
DCF
是等边三角形,求证:
AF
=
BE
,
AF
⊥
BE
;
(2)如图②,若△
ADE
和△
DCF
为一般三角形,其中
AE
=
DF
,
ED
=
FC
,则第(1)问中的结论仍然成立吗?若成立,请给予证明;若不成立,请说明理由.
相关知识点
图形的性质
三角形
等腰三角形
等腰三角形
直角三角形斜边上的中线