刷题首页
题库
高中数学
题干
已知椭圆的两焦点为
F
1
(-2
,0),
F
2
(2
,0),离心率
e
=
.
(1)求椭圆的方程;
(2)设直线
l
:
y
=
x
+
m
,若
l
与此椭圆相交于
P
,
Q
两点,且|
PQ
|等于椭圆的短轴长,求
m
的值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-05 12:37:50
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
同类题2
已知椭圆
:
,短轴长为
,离心率为
,直线
与椭圆
交于不同的两点
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
,且
的面积为
,求
的值.
同类题3
已知椭圆
经过点
.离心率
.
(1)求椭圆
C
的标准方程;
(2)若
M
,
N
分别是椭圆长轴的左、右端点,动点
D
满足
,连接
MD
交椭圆于点
Q
.问:
x
轴上是否存在异于点
M
的定点
G
,使得以
QD
为直径的圆恒过直线
QN
,
GD
的交点?若存在,求出点
G
的坐标;若不存在,说明理由.
同类题4
已知椭圆
:
离心率为
,且经过点
.
(1)求椭圆方程;
(2)直线
交椭圆于
,
两点,当
面积等于
时,求
的值.
同类题5
已知椭圆
的离心率为
,
,
,
,
的面积为
.
(1)求椭圆
的方程;
(2)过右焦点
作与
轴不重合的直线
交椭圆
于
,
两点,连接
,
分别交直线
于,
,
两点,若直线
,
的斜率分别为
,
,试问:
是否为定值?若是,求出该定值,若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程