刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,
,
,
,
的面积为
.
(1)求椭圆
的方程;
(2)过右焦点
作与
轴不重合的直线
交椭圆
于
,
两点,连接
,
分别交直线
于,
,
两点,若直线
,
的斜率分别为
,
,试问:
是否为定值?若是,求出该定值,若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-08 11:48:15
答案(点此获取答案解析)
同类题1
已知双曲线
C
1
的渐近线是
x
±2
y
=0,焦点坐标是
F
1
(-
,0)、
F
2
(
,0).
(1)求双曲线
C
1
的方程;
(2)若椭圆
C
2
与双曲线
C
1
有公共的焦点,且它们的离心率之和为
,点
P
在椭圆
C
2
上,且|
PF
1
|=4,求∠
F
1
PF
2
的大小.
同类题2
已知椭圆C:
=1(a>b>0)的离心率为
,椭圆的短轴端点与双曲线
的焦点重合,过点P(4,0)且不垂直于x轴的直线l与椭圆C相交于A,B两点.
(1)求椭圆C的方程;
(2)求
的取值范围.
同类题3
已知椭圆
:
经过点
,且离心率为
.
(I)求椭圆
的方程;
(II)若一组斜率为
的平行线,当它们与椭圆
相交时,证明:这组平行线被椭圆
截得的线段的中点在同一条直线上.
同类题4
椭圆
的离心率是
,则它的长轴长是( )
A.1
B.1或2
C.2
D.2或4
同类题5
已知椭圆
的离心率为
,过焦点且垂直于
轴的直线被椭圆
所截得的弦长为
.
(1)求椭圆
的标准方程;
(2)若经过点
的直线
与椭圆
交于不同的两点
是坐标原点,求
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题