刷题首页
题库
高中数学
题干
设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-23 03:19:25
答案(点此获取答案解析)
同类题1
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于
,它的一个顶点恰好是抛物线x
2
=4y的焦点,则椭圆C的标准方程为
_
.
同类题2
已知椭圆
的右焦点为
,离心率
.
(1)求椭圆
的方程;
(2)若过点
作直线与椭圆
相交于两点
,设
为椭圆
上动点,且满足
(
为坐标原点).当
时,求
面积
的取值范围.
同类题3
已知椭圆
的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过定点
的直线与椭圆
交于两点
、
,直线
,
的斜率为
、
,求证:
为定值.
同类题4
中心在坐标原点的椭圆,焦点在
x
轴上,焦距为4,离心率为
,则该椭圆的方程为( )
A.
B.
C.
D.
同类题5
椭圆
:
的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点
作斜率为
的直线
,使
与椭圆
有且只有一个公共点,设直线的
斜率分别为
。若
,试证明
为定值,并求出这个定值。
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
根据直线与椭圆的位置关系求参数或范围