刷题首页
题库
高中数学
题干
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-16 03:39:30
答案(点此获取答案解析)
同类题1
已知椭圆
与双曲线
有相同的焦点,则
的值为______
同类题2
已知椭圆
:
的长轴长是离心率的两倍,直线
:
交
于
,
两点,且
的中点横坐标为
.
(1)求椭圆
C
的方程;
(2)若
,
是椭圆
上的点,
为坐标原点,且满足
,求证:
,
斜率的平方之积是定值.
同类题3
已知椭圆
:
的离心率为
,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)直线
与椭圆
交于
,
两点,
的中点
在圆
上,求
(
为坐标原点)面积的最大值.
同类题4
如图,若
为椭圆
:
上一点,
为椭圆的焦点,若以椭圆短轴为直径的圆与
相切于中点,则椭圆
的方程为
___________
.
同类题5
已知椭圆
的中心在坐标原点
,焦点在
轴上,它的一个顶点恰好是抛物线
的焦点,它的离心率是双曲线
的离心率的倒数.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过椭圆
的右焦点
作直线
交椭圆
于
、
两点,交
轴于
点,若
,
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的切线方程