刷题首页
题库
高中数学
题干
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-16 03:39:30
答案(点此获取答案解析)
同类题1
椭圆
的两个焦点为
,点P在椭圆C 上,且
,
,
.
(1)求椭圆C的方程;
(2)若直线L过点
交椭圆于A、B两点,且点M为线段AB的中点,求直线L的一般方程.
同类题2
已知椭圆
:
的离心率为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)设
,过点
的直线
交椭圆
于
,
两点,证明:
为定值.
同类题3
已知椭圆
的离心率
,且椭圆过点
.
(I)求椭圆
的标准方程;
(II)已知点
为椭圆
的下顶点,
为椭圆
上与
不重合的两点,若直线
与直线
的斜率之和为
,试判断是否存在定点
,使得直线
恒过点
,若存在,求出点
的坐标;若不存在,请说明理由.
同类题4
已知椭圆
的中心在坐标原点,左右焦点分别为
和
,且椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过椭圆的右顶点
作两条相互垂直的直线
,
,分别与椭圆交于点
(均异于点
),求证:直线
过定点,并求出该定点的坐标.
同类题5
已知椭圆
中心在原点,焦点在坐标轴上,直线
与椭圆
在第一象限内的交点是
,点
在
轴上的射影恰好是椭圆
的右焦点
,椭圆
的另一个焦点是
,且
.
(1)求椭圆
的方程;
(2)直线
过点
,且与椭圆
交于
,
两点,求
的面积的最大值及此时
内切圆半径.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的切线方程