刷题首页
题库
高中数学
题干
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-16 03:39:30
答案(点此获取答案解析)
同类题1
椭圆
的两个焦点为
,点P在椭圆C 上,且
,
,
.
(1)求椭圆C的方程;
(2)若直线L过点
交椭圆于A、B两点,且点M为线段AB的中点,求直线L的一般方程.
同类题2
已知椭圆
的焦距等于
,短轴与长轴的长度比等于
.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,过
作两直线
,分别交椭圆
于另外两点
,当
的倾斜角互为补角时,求
面积的最大值.
同类题3
已知椭圆
C
:
的焦距为
,短半轴的长为2,过点
P
(-2,1)且斜率为1的直线
l
与椭圆
C
交于
A
,
B
两点.
(1)求椭圆
C
的方程;
(2)求弦
AB
的长.
同类题4
已知椭圆
的左、右焦点分别是
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
两个不同点,证明:直线
于
的交点在一条定直线上.
同类题5
已知椭圆
的离心率为
,左、右焦点分别是
,椭圆
上短轴的一个端点与两个焦点构成的三角形的面积为
;
(1)求椭圆
的方程;
(2)过
作垂直于
轴的直线
交椭圆
于
两点(点
在第二象限),
是椭圆上位于直线
两侧的动点,若
,求证:直线
的斜率为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的切线方程