刷题首页
题库
高中数学
题干
已知椭圆
的左右焦点分别为
,上顶点为
,右顶点为
,直线
与圆
相切于点
.
(1)求椭圆
的方程.
(2)过点
作一条斜率存在的直线
与椭圆
相交于
两点,求
的面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-19 03:22:04
答案(点此获取答案解析)
同类题1
已知椭圆
的左顶点和左焦点分别为
和
,
,直线
交椭圆于
两点(
在第一象限),若线段
的中点在直线
上,则该椭圆的方程为( )
A.
B.
C.
D.
同类题2
在平面直角坐标系
中,已知椭圆
的焦距为4,且过点
.
(1)求椭圆
的方程
(2)设椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
、
两点,问是否存在直线
,使得
为
的垂心,若存在,求出直线
的方程;若不存在,说明理由.
同类题3
平面直角坐标系
中,过椭圆
:
(
)焦点的直线
交
于
两点,
为
的中点,且
的斜率为9.
(Ⅰ)求
的方程;
(Ⅱ)
是
的左、右顶点,
是
上的两点,若
,求四边形
面积的最大值.
同类题4
已知椭圆
的离心率是
.
(1)求椭圆
的方程;
(2)已知
,
分别是椭圆
的左、右焦点,过
作斜率为
的直线
,交椭圆
于
两点,直线
,
分别交
轴于不同的两点
.如果
为锐角,求
的取值范围.
同类题5
已知椭圆
:
的左右焦点分别为
,
,左顶点为
,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)过原点
且与
轴不重合的直线交椭圆
于
,
两点,直线
分别与
轴交于点
,
,.求证:以
为直径的圆恒过交点
,
,并求出
面积的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆中的弦长