刷题首页
题库
高中数学
题干
抛物线
的焦点
是双曲线
的右焦点,点
是曲线
的交点,点
在抛物线的准线上,
是以点
为直角顶点的等腰直角三角形,则双曲线
的离心率为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-11 02:23:15
答案(点此获取答案解析)
同类题1
如图,已知抛物线的方程为
,过点
作直线
与抛物线相交于
,
两点,点
的坐标为
,连接
,
.设
,
与
轴分别相交于
,
两点.如果
的斜率与
的斜率之积为
,则
的大小等于( )
A.
B.
C.
D.
同类题2
已知椭圆的中心在原点,离心率
,且它的一个焦点与抛物线
的焦点重合,则此椭圆方程为()
A.
B.
C.
D.
同类题3
关于椭圆的切线由下列结论:若
是椭圆
上的一点,则过点
的椭圆的切线方程为
.已知椭圆
.
(1)利用上述结论,求过椭圆
上的点
的切线方程;
(2)若
是直线
上任一点,过点
作椭圆
的两条切线
,
(
,
为切点),设椭圆的右焦点为
,求证:
.
同类题4
已知
是双曲线
的右焦点,过点
作垂直于
轴的直线交于双曲线
于
两点,
分别为双曲线的左、右顶点,连接
交
轴于点
,连接
并延长交
于点
,且
为线段
的中点,则双曲线的离心率为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线