刷题首页
题库
高中数学
题干
已知实轴长为2
的双曲线C:
的左、右焦点分别为F
1
(﹣2,0),F
2
(2,0),点B为双曲线C虚轴上的一个端点,则△BF
1
F
2
的重心到双曲线C的渐近线的距离为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-11 04:41:13
答案(点此获取答案解析)
同类题1
对于曲线
所在的平面上的定点
,若存在以点
为顶点的角
,使得
对于曲线
上的任意两个不同的点
恒成立,则称角
为曲线
的“
点视角”,并称其中最小的“
点视角”为曲线
相对于点
的”
点确视角”.已知曲线
和圆
是
轴上一点
(1)对于坐标原点
,写出曲线
的“
点确视角”的大小;
(2)若
在曲线
上,求
的最小值;
(3)若曲线
和圆
的“
点确视角”相等,求
点坐标.
同类题2
已知椭圆
的离心率为
,椭圆
与
轴交于
两点,且
.
(1)求椭圆
的方程;
(2)设点
是椭圆
上的一个动点,且直线
与直线
分别交于
两点.是否存在点
使得以
为直径的圆经过点
?若存在,求出点
的横坐标;若不存在,说明理由.
同类题3
已知抛物线
,直线
、
都过点
且都与抛物线相切.
(1)若
,求
的值;
(2)直线
、
与分别与
轴相交于
、
两点,求
面积
的取值范围.
同类题4
已知抛物线
的焦点为
,过
的直线交抛物线于
,
两点
(1)若以
,
为直径的圆的方程为
,求抛物线
的标准方程;
(2)过
,
分别作抛物线的切线
,
,证明:
,
的交点在定直线上.
同类题5
在直角坐标系
中,点
到点
,
的距离之和是
,点
的轨迹
与
轴的负半轴交于点
,不过点
的直线
与轨迹
交于不同的两点
和
.
⑴求轨迹
的方程;
⑵当
时,证明直线
过定点.
相关知识点
平面解析几何
圆锥曲线