刷题首页
题库
高中数学
题干
过椭圆
的右焦点作一条斜率为2的直线与椭圆交于
,
两点,
为坐标原点,则
的面积为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-11 04:17:55
答案(点此获取答案解析)
同类题1
已知椭圆
的一个顶点为
,离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为
,
求△AOB面积的最大值.
同类题2
已知椭圆
的左焦点
,离心率为
,点
P
为椭圆
E
上任一点,且
的最大值为
.
(1)求椭圆
E
的方程;
(2)若直线
l
过椭圆的左焦点
,与椭圆交于
A
,
B
两点,且
的面积为
,求直线
l
的方程.
同类题3
已知椭圆
的离心率为
,左、右焦点分别是
.以
为圆心以
为半径的圆与以
为圆心以
+1为半径的圆相交,且交点在椭圆
C
上.
(1)求椭圆的标准方程;
(2)不过点
的直线
与该椭圆交于
两点,且
与
互补,求
面积的最大值.
同类题4
已知动圆与圆
相切,且与圆
相内切,记圆心的轨迹为曲线.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点
作OQ的平行线交曲线C于M,N两个不同的点, 求△QMN面积的最大值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆的弦长、焦点弦
椭圆中三角形(四边形)的面积