刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率
,左、右焦点分别为
,
,点
满足:
在线段
的中垂线上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若斜率为
(
)的直线
与
轴、椭圆
顺次相交于点
、
、
,且
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-14 10:14:06
答案(点此获取答案解析)
同类题1
已知椭圆
的左焦点为
,离心率
.
(I)求椭圆C的标准方程;
(II)已知直线
交椭圆C于A,B两点.
①若直线
经过椭圆C的左焦点F,交y轴于点P,且满足
.求证:
为定值;
②若
,求
面积的取值范围.
同类题2
已知椭圆C:
的离心率为
,
,
分别为椭圆C的左、右焦点,点
满足
.
求椭圆C的方程;
直线l经过椭圆C的右焦点与椭圆相交于M,N两点,设O为坐标原点,直线OM,直线l,直线ON的斜分别为
,k,
,且
,k,
成等比数列,求
的值.
同类题3
已知椭圆
的离心率为
,短轴长为2;
(1)求椭圆的标准方程;
(2)设椭圆上顶点
,左、右顶点分别为
、
.直线
且交椭圆于
、
两点,点E 关于
轴的对称点为点
,求证:
.
同类题4
在平面直角坐标系
中,已知椭圆
的离心率为
,且右焦点
到左准线的距离为5.动直线
与椭圆交于
,
两点(
在第一象限).
(1)求椭圆
的标准方程;
(2)设
,
,且
,求当
面积最大时,直线
的方程.
同类题5
在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程