刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知椭圆
的离心率为
,且右焦点
到左准线的距离为5.动直线
与椭圆交于
,
两点(
在第一象限).
(1)求椭圆
的标准方程;
(2)设
,
,且
,求当
面积最大时,直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-27 02:11:17
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)设直
交椭圆
于
两点,判断点
与以线段
为直径的圆的位置关系,并说明理由.
同类题2
如图,已知椭圆
的左、右焦点为
为椭圆上一点,
为椭圆上顶点,
在
上,
.
(1)求当离心率
时的椭圆方程;
(2)求满足题设要求的椭圆离心率的取值范围;
(3)当椭圆离心率最小时,若过
的直线
与椭圆交于
(不同于点
)两点,试问:
是否为定值?并给出证明.
同类题3
已知椭圆的两焦点为
,
,离心率
.
(1)求此椭圆的方程;
(2)设直线
:
,若
与此椭圆相交于
、
两点,求
的长.
同类题4
已知椭圆的对称轴为坐标轴,离心率
,短轴长为
,求椭圆的方程.
同类题5
设
分别为椭圆
的左、右焦点,点
为椭圆
的左顶点,点
为椭圆
的上顶点,且
.
(1)若椭圆
的离心率为
,求椭圆
的方程;
(2)设
为椭圆
上一点,且在第一象限内,直线
与
轴相交于点
,若以
为直径的圆经过点
,证明:点
在直线
上.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程