刷题首页
题库
高中数学
题干
已知椭圆
,四点
,
,
,
,恰有三点在椭圆
上.
(1)求
的方程;
(2)设
、
为椭圆
在左、右焦点,
是椭圆在第一象限上一点,满足
,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 06:11:48
答案(点此获取答案解析)
同类题1
设点
在以
,
为焦点的椭圆
上.
(1)求椭圆
的方程;
(2)经过
作直线
交
于两点
,交
轴于
,若
,
,且
,求
.
同类题2
已知椭圆
:
的左、右焦点分别为
,右顶点为
,且
过点
,圆
是以线段
为直径的圆,经过点
且倾斜角为
的直线与圆
相切.
(1)求椭圆
及圆
的方程;
(2)是否存在直线
,使得直线
与圆
相切,与椭圆
交于
两点,且满足
?若存在,请求出直线
的方程,若不存在,请说明理由.
同类题3
已知椭圆
的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点
在椭圆
上,直线
与椭圆
交于
,
两点,与
轴、
轴分别相交于点
和点
,且
,点
是点
关于
轴的对称点,
的延长线交椭圆于点
,过点
、
分别作
轴的垂线,垂足分别为
、
.
(1)求椭圆
的方程;
(2)是否存在直线
,使得点
平分线段
,
?若存在,求出直线
的方程;若不存在,请说明理由.
同类题4
已知椭圆
的长轴为
,且过点
(1)求椭圆
的方程;
(2)设点
为原点,若点
在曲线
上,点
在直线
上,且
,试判断直线
与圆
的位置关系,并证明你的结论.
同类题5
在直角坐标系
中,椭圆
:
,点
在椭圆
上,过点
作圆
的切线,其切线长为椭圆
的短轴长.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线
与椭圆
的另一个交点为
,点
在椭圆
上,且
,直线
与
轴交于
点.设直线
,
的斜率分别为
,
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程