刷题首页
题库
高中数学
题干
已知中心在原点,焦点在
x
轴上的椭圆,离心率
,且经过抛物线
的焦点.若过点
的直线
斜率不等于零
与椭圆交于不同的两点
E
、
在
B
、
F
之间
,
求椭圆的标准方程;
求直线
l
斜率的取值范围;
若
与
面积之比为
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-26 04:41:58
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)的离心率为
,短轴长是2.
(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l
1
,l
2
,这两条直线与椭圆C的另一个交点分别为M,N.设l
1
的斜率为k(k≠0),△DMN的面积为S,当
,求k的取值范围.
同类题2
已知椭圆
的左、右焦点分别为
,
,离心率为
,直线
l
经过
与椭圆交于
P
,
Q
两点.当
与
y
轴的交点是线段
的中点时,
.
(1)求椭圆的方程;
(2)设直线
l
不垂直于
x
轴,若
满足
,求
t
的取值范围.
同类题3
已知椭圆
:
,右焦点
,点
在椭圆上.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知直线
与椭圆
交于
两点,
为椭圆
上异于
的动点.
(1)若直线
的斜率都存在,证明:
;
(2)若
,直线
分别与直线
相交于点
,直线
与椭圆
相交
于点
(异于点
),求证:
,
,
三点共线.
同类题4
已知椭圆
E
的对称轴为坐标轴,焦点
F
1
,
F
2
在
y
轴,离心率为
.
A
是椭圆
E
与
x
轴负半轴的交点,且|
AF
1
|+|
AF
2
|=4.
(1)求曲线
E
的方程;
(2)过
A
作两条直线
L
1
,
L
2
,且
L
1
,
L
2
与曲线
E
的异于
A
的交点分别为
B
,
C
.设
L
1
,
L
2
的斜率分别是
k
1
,
k
2
,若
k
1
k
2
=1,求证:由
B
、
C
确定的直线
l
经过定点.
同类题5
已知椭圆
的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,
为坐标原点.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,点
在直线
上,且
,求证:
为定值;
(3)设点
在椭圆
上运动,
,且点
到直线
的距离为常数
,求动点
的轨迹方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围