刷题首页
题库
高中数学
题干
已知椭圆
的两焦点为
,
,且过点
,直线
交曲线
于
,
两点,
为坐标原点.
(1)求椭圆
的标准方程;
(2)若
不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线
过点
,求
面积的最大值,以及取最大值时直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-27 02:09:41
答案(点此获取答案解析)
同类题1
已知椭圆
的左右焦点坐标为
,且椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上位于第一象限内的动点,
分别为椭圆
的左顶点和下顶点,直线
与
轴交于点
,直线
与
轴交于点
,求四边形
的面积.
同类题2
已知椭圆
的右顶点为
,上顶点为
,右焦点为
.连接
并延长与椭圆
相交于点
,且
(1)求椭圆
的方程;
(2)设经过点
的直线
与椭圆
相交于不同的两点
,直线
分别与直线
相交于点
,点
.若
的面积是
的面积的2倍,求直线
的方程.
同类题3
的左焦点,且椭圆
过点
.
(1)求椭圆
的方程;
(2)是否存在平行四边形
,同时满足下列两个条件:
①点
在直线
上;②点
在椭圆
上且直线
的斜率等于1.如果存在,求出
点坐标;如果不存在,说明理由.
同类题4
已知椭圆
,过
上一点
的切线
的方程为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且斜率不为
的直线交椭圆于
两点,试问
轴上是否存在点
,使得
?若存在,求出点
的坐标;若不存在,说明理由.
同类题5
已知椭圆:
的左、右点分别为
点
在椭圆上,且
(1)求椭圆
的方程;
(2)过点(1,0)作斜率为
的直线
交椭圆
于M、N两点,若
求直线
的方程;
(3)点P、Q为椭圆上的两个动点,
为坐标原点,若直线
的斜率之积为
求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中三角形(四边形)的面积