刷题首页
题库
高中数学
题干
已知椭圆
的一个顶点是
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知矩形
的四条边都与椭圆
相切,设直线AB方程为
,求矩形
面积的最小值与最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-27 11:45:45
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为点
,左、右顶点分别为
,长轴长为
,椭圆上任意一点
(不与
重合)与
连线的斜率乘积均为
.
(1)求椭圆
的标准方程;
(2)如图,过点
的直线
与椭圆
交于
两点,过点
的直线
与椭圆
交于
两点,且
,试问:四边形
可否为菱形?并请说明理由.
同类题2
已知椭圆
满足:过椭圆C的右焦点
且经过短轴端点的直线的倾斜角为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为坐标原点,若点
在直线
上,点
在椭圆C上,且
,求线段
长度的最小值.
同类题3
已知椭圆
的离心率为
,其中左焦点为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同的两点
、
,且线段
的中点
在圆
上,求
的值.
同类题4
焦点坐标为
,长轴长为10,则此椭圆的标准方程为( )
A.
B.
C.
D.
同类题5
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程