刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知椭圆
的离心率为
,且椭圆
的短轴恰好是圆
的一条直径.
(1)求椭圆
的方程
(2)设
分别是椭圆
的左,右顶点,点
是椭圆
上不同于
的任意点,是否存在直线
,使直线
交直线
于点
,且满足
,若存在,求实数
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-08-12 03:39:13
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
同类题2
已知椭圆中心在原点,焦点在
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)
为椭圆左顶点,
为椭圆上异于
的任意两点,若
,求证:直线
过定点并求出定点坐标.
同类题3
已知椭圆
C
:
的右焦点为
,离心率为
,直线
与椭圆
C
交于不同两点
,直线
分别交
轴于
两点.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)求证:
.
同类题4
设
分别为椭圆
的左、右焦点,点
为椭圆
的左顶点,点
为椭圆
的上顶点,且
.
(1)若椭圆
的离心率为
,求椭圆
的方程;
(2)设
为椭圆
上一点,且在第一象限内,直线
与
轴相交于点
,若以
为直径的圆经过点
,证明:点
在直线
上.
同类题5
给定椭圆
C
:
(
),称圆心在原点
O
,半径为
的圆是椭圆
C
的“卫星圆”.若椭圆
C
的离心率
,点
在
C
上.
(1)求椭圆
C
的方程和其“卫星圆”方程;
(2)点
P
是椭圆
C
的“卫星圆”上的一个动点,过点
P
作直线
,
使得
,与椭圆
C
都只有一个交点,且
,
分别交其“卫星圆”于点
M
,
N
,证明:弦长
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题