刷题首页
题库
高中数学
题干
若椭圆
:
与双曲线
:
有相同的焦点,且椭圆
与双曲线
交于点
.
(1)求
的值;
(2)过椭圆
的右焦点
且斜率为
的直线
与椭圆
交于
,
两点,求
的长度.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 05:09:36
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,其右顶点为
,下顶点为
,定点
,
的面积为
,过点
作与
轴不重合的直线
交椭圆
于
两点,直线
分别与
轴交于
两点.
(1)求椭圆
的方程;
(2)试探究
的横坐标的乘积是否为定值,说明理由.
同类题2
椭圆
的离心率为
,其右焦点到点
的距离为
,过点
的直线与椭圆
交于
两点
(1)求椭圆
C
的方程;
(2)求
最大值.
同类题3
已知离心率为
的椭圆
的右焦点与抛物线
的焦点
重合,且点
到
的准线的距离为2.
(1)求
的方程;
(2)若直线
与
交于
两点,与
交于
两点,且
(
为坐标原点),求
面积的最大值.
同类题4
已知椭圆
的离心率为
,其左,右焦点分别为
,
,点
P
是坐标平面内一点,且
,
,其中
O
为坐标原点.
(1)求椭圆
C
的方程;
(2)过点
,且斜率为
的动直线
l
交椭圆于
A
,
B
两点,求弦
AB
的垂直平分线在
轴上截距的最大值.
同类题5
已知椭圆
的离心率为
,且过点
.
(1)求
的方程;
(2)是否存在直线
与
相交于
两点,且满足:①
与
(
为坐标原点)的斜率之和为2;②直线
与圆
相切,若存在,求出
的方程;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据a、b、c求双曲线的标准方程