刷题首页
题库
高中数学
题干
已知椭圆
的焦距为
,且经过点
.
(1)求椭圆
的方程;
(2)设
是椭圆
与
轴正半轴的交点,
上是否存在两点
,使得
是以
为直角顶点的等腰直角三角形?若存在,请说明满足条件的
的个数;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-23 11:13:43
答案(点此获取答案解析)
同类题1
已知椭圆
:
,右焦点
,点
在椭圆上.
(1)求椭圆的方程;
(2)设
为椭圆
上一点,过焦点
的弦分别为
,设
,
,若
,求
的值.
同类题2
已知椭圆
:
(
)的左,右顶点分别为
,
,长轴长为
,且经过点
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
上异于
,
的任意一点,证明:直线
,
的斜率的乘积为定值;
(3)已知两条互相垂直的直线
,
都经过椭圆
的右焦点
,与椭圆
交于
,
和
,
四点,求四边形
面积的取值范围.
同类题3
如图,已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
.
(1)求椭圆
的方程.
(2)过椭圆
右焦点
的直线,交椭圆
于
两点,交直线
于点
,判定直线
的斜率是否依次构成等差数列?请说明理由.
同类题4
已知椭圆
的中心在原点,对称轴为坐标轴,椭圆
与直线
相切于点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆相交于
、
两点(
,
不是长轴端点),且以
为直径的圆过椭圆
在
轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.
同类题5
已知椭圆
经过点
,且长轴长是短轴长的2倍.
(1)求椭圆的标准方程;
(2)若点
在椭圆上运动,点
在圆
上运动,且总有
,求
的取值范围;
(3)过点
的动直线
交椭圆于
、
两点,试问:在此坐标平面上是否存在一个点
,使得无论
如何转动,以
为直径的圆恒过点
?若存在,请求出点
的坐标;若不存在,请说明由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程