刷题宝
  • 刷题首页
题库 高中数学

题干

设,是椭圆的两个焦点,若上存在点满足,则的取值范围是______.
上一题 下一题 0.99难度 填空题 更新时间:2020-02-14 09:39:23

答案(点此获取答案解析)

同类题1

已知是椭圆:上一点,若不等式恒成立,则的取值范围是______.

同类题2

已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.
(1)求椭圆的方程:
(2)若是椭圆上的动点,求的取值范围;
(3)直线:与椭圆交于异于椭圆顶点的,两点,为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线与轴交于点.若直线,的斜率分别为,试判断,是否为定值,若是,求出该定值;若不是,说明理由.

同类题3

已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,点,且,求直线的方程.

同类题4

设椭圆:的左右焦点分别为,,上顶点为.
(Ⅰ)若.
(i)求椭圆的离心率;
(ii)设直线与椭圆的另一个交点为,若的面积为,求椭圆的标准方程;
(Ⅱ)由椭圆上不同三点构成的三角形称为椭圆的内接三角形,当时,若以为直角顶点的椭圆的内接等腰直角三角形恰有3个,求实数的取值范围.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 直线与圆锥曲线的位置关系
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)