刷题首页
题库
高中数学
题干
已知点
,
的坐标分别为
,
,三角形
的两条边
,
所在直线的斜率之积是
。
(I)求点
的轨迹方程:
(II)设直线
方程为
,直线
方程为
,直线
交
于
点,点
,
关于
轴对称,直线
与
轴相交于点
。若
面积为
,求
的值。
上一题
下一题
0.99难度 解答题 更新时间:2020-02-18 10:15:51
答案(点此获取答案解析)
同类题1
已知在平面直角坐标系
中,动点
与两定点
连线的斜率之积为
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若过点
的直线
与曲线
交于
两点,曲线
上是否存在点
使得四边形
为平行四边形?若存在,求直线
的方程,若不存在,说明理由.
同类题2
已知过点
且圆心在直线
上的圆
与
轴相交于
两点,曲线
上的任意一点
与
两点连线的斜率之积为
.
(1)求曲线
的方程;
(2)过原点
作射线
,分别平行于
,交曲线
于
两点,求
的取值范围.
同类题3
已知圆
上的动点,点Q在NP上,点G在MP上,且满足
.
(I)求点G的轨迹C的方程
(II)过点(2,0)作直线
,与曲线C交于A、B两点,O是坐标原点,设
是否存在这样的直线
,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线
的方程若不存在,试说明理由.
同类题4
动圆
M
与圆
F
1
:
x
2
+
y
2
+6
x
+5=0外切,同时与圆
F
2
:
x
2
+
y
2
﹣6
x
﹣91=0内切.
(1)求动圆圆心
M
的轨迹方程
E
,并说明它是什么曲线;
(2)若直线
y
x
+
m
与(1)中的轨迹
E
有两个不同的交点,求
m
的取值范围.
同类题5
如图,已知椭圆
的长轴
,长为4,过椭圆的右焦点
作斜率为
(
)的直线交椭圆于
、
两点,直线
,
的斜率之积为
.
(1)求椭圆
的方程;
(2)已知直线
,直线
,
分别与
相交于
、
两点,设
为线段
的中点,求证:
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
根据直线与椭圆的位置关系求参数或范围