刷题首页
题库
高中数学
题干
设点
、
,动点
满足
,
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过定点
作直线
交曲线
于
、
两点.设
为坐标原点,若直线
与
轴垂直,求
面积的最大值;
(3)设
,在
轴上,是否存在一点
,使直线
和
的斜率的乘积为非零常数?若存在,求出点
的坐标和这个常数;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-20 12:10:14
答案(点此获取答案解析)
同类题1
在平面直角坐标系中,
,设
的内切圆分别与边
相切于点
,已知
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过
的直线与
轴正半轴交于点
,与曲线E交于点
轴,过
的另一直线与曲线
交于
两点,若
,求直线
的方程.
同类题2
已知△ABC的三边AB,BC,AC的长依次成等差数列,且|AB|>|AC|,B(-1,0),C(1,0),则顶点A的轨迹方程为( )
A.
B.
C.
D.
同类题3
在矩形
中,
,
,
、
、
、
分别为矩形四条边的中点,以
,
所在直线分别为
,
轴建立直角坐标系(如图所示).若
、
分别在线段
、
上.且
.
(Ⅰ)求证:直线
与
的交点
总在椭圆
:
上;
(Ⅱ)若
、
为曲线
上两点,且直线
与直线
的斜率之积为
,求证:直线
过定点.
同类题4
已知点
是圆
:
上一动点,线段
与圆
:
相交于点
.直线
经过
,并且垂直于
轴,
在
上的射影点为
.
(1)求点
的轨迹
的方程;
(2)设圆
与
轴的左、右交点分别为
,
,点
是曲线
上的点(点
与
,
不重合),直线
,
与直线
:
分别相交于点
,
,求证:以
直径的圆经过定点.
同类题5
已知圆
,点
,点
是圆
上任意一点,线段
的中垂线与
交于点
.
(Ⅰ)求点
的轨迹
的方程.
(Ⅱ)斜率不为0的动直线
过点
且与轨迹
交于
,
两点,
为坐标原点.是否存在常数
,使得
为定值?若存在,求出这个定值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中三角形(四边形)的面积