刷题首页
题库
高中数学
题干
已知椭圆
:
的左、右焦点分别为
,
,离心率为
,点
是椭圆
上的一个动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)设斜率不为零的直线
与椭圆
的另一个交点为
,且
的垂直平分线交
轴于点
,求直线
的斜率.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-20 05:05:18
答案(点此获取答案解析)
同类题1
椭圆C:
(a>b>0)的左、右焦点分别为
,离心率为
,过焦点
且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为
,直线MB的斜率为
,证明
为定值,并求出该定值.
同类题2
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2.0)为其右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OA与L的距离等于4?若存在,求出直线L的方程;若不存在,说明理由.
同类题3
设椭圆
的左右焦点分别为
,离心率为
,点
在椭圆上,且
的面积的最大值为
.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于不同的两点
两点,若在
轴上存在点
,使得
,求点
的横坐标的取值范围.
同类题4
已知点
在椭圆
:
上,且点
到
的左、右焦点的距离之和为
.
(1)求
的方程;
(2)设
为坐标原点,若
的弦
的中点在线段
(不含端点
,
)上,求
的取值范围.
同类题5
已知以椭圆
的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.
(1)求椭圆
的方程:
(2)若
是椭圆
上的动点,求
的取值范围;
(3)直线
:
与椭圆
交于异于椭圆顶点的
,
两点,
为坐标原点,直线
与椭圆
的另一个交点为
点,直线
和直线
的斜率之积为1,直线
与
轴交于点
.若直线
,
的斜率分别为
,
试判断
,是否为定值,若是,求出该定值;若不是,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围