刷题首页
题库
高中数学
题干
已知椭圆
:
,右焦点
,点
在椭圆上.
(1)求椭圆的方程;
(2)设
为椭圆
上一点,过焦点
的弦分别为
,设
,
,若
,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-26 10:11:31
答案(点此获取答案解析)
同类题1
在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线
l
与椭圆C交于A,B两点.
①若直线
l
过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线
l
的斜率为
,试探究OA
2
+ OB
2
是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.
同类题2
已知椭圆
:
,左焦点是
.
(1)若左焦点
与椭圆
的短轴的两个端点是正三角形的三个顶点,点
在椭圆
上.求椭圆
的方程;
(2)过原点且斜率为
的直线
与(1)中的椭圆
交于不同的两点
,设
,求四边形
的面积取得最大值时直线
的方程;
(3)过左焦点
的直线
交椭圆
于
两点,直线
交直线
于点
,其中
是常数,设
,
,计算
的值(用
的代数式表示).
同类题3
已知椭圆
过点
,且离心率
。
(1)求椭圆方程;
(2)若直线
与椭圆交于不同的两点
,且线段
的垂直平分线过定点
,求
的取值范围。
同类题4
分别求满足下列条件的椭圆标准方程:
(1)中心在原点,以坐标轴为对称轴,且经过两点
,
;
(2)离心率
,且与椭圆
有相同焦点.
同类题5
已知椭圆
:
的离心率为
,右焦点为
F
,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线交椭圆
于
,
两点,交直线
于点
,设
,
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
求直线与椭圆的交点坐标