刷题首页
题库
高中数学
题干
若向量
、
、
的起点与终点
、
、
、
互不重合且无三点共线,且满足下列关系(
是空间任一点),则能使向量
、
、
成为空间一组基底的关系是
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-12-17 03:03:15
答案(点此获取答案解析)
同类题1
下列命题中正确的是( )
A.
是空间中的四点,若
不能构成空间基底,则
共面
B.已知
为空间的一个基底,若
,则
也是空间的基底
C.若直线
的方向向量为
,平面
的法向量为
,则直线
D.若直线
的方向向量为
,平面
的法向量为
,则直线
与平面
所成角的正弦值为
同类题2
若向量
,
,
是空间的一个基底,向量
,
,那么可以与
,
构成空间的另一个基底的向量是( )
A.
B.
C.
D.
同类题3
设
为空间的一个基底,
是三个非零向量,则
是
的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)
同类题4
给出下列命题,其中正确命题有( )
A.空间任意三个不共面的向量都可以作为一个基底
B.已知向量
,则
与任何向量都不能构成空间的一个基底
C.
是空间四点,若
不能构成空间的一个基底,那么
共面
D.已知向量
组是空间的一个基底,若
,则
也是空间的一个基底
同类题5
以下四个命题中正确的是( )
A.空间的任何一个向量都可用其他三个向量表示
B.若{
a
,
b
,
c
}为空间向量的一组基底,则
a
,
b
,
c
全不是零向量
C.△
ABC
为直角三角形的充要条件是
=0
D.任何三个不共线的向量都可构成空间向量的基底
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量及其运算
空间向量的正交分解与坐标表示
空间向量基底概念及辨析