刷题首页
题库
高中数学
题干
如图所示,
ABCD
为矩形,
PA
⊥平面
ABCD
,
PA
=
AD
,
M
,
N
,
Q
分别是
PC
,
AB
,
CD
的中点.
求证:(1)
MN
∥平面
PAD
;
(2)平面
QMN
∥平面
PAD
.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-14 03:19:23
答案(点此获取答案解析)
同类题1
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
P
A.
(I)证明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
同类题2
如图,正方体
的棱长为
,点
为
的中点.
(1)证明:
平面
;
(2)求二面角
的余弦值.
同类题3
如图,在多面体
中,平面
平面
.四边形
为正方形,四边形
为梯形,且
,
,
,
.
(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点
,使得直线
平面
若存在,求
的值;若不存在,请说明理由.
同类题4
在如图所示的多面体中,
平面
=
=
=
是
的中点.求证:
.
同类题5
若直线l的方向向量为a=(-1,0,-2),平面α的法向量为u=(4,0,8),则( )
A.l∥α
B.l⊥α
C.l⊂α
D.l与α斜交
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明