刷题首页
题库
高中数学
题干
如图,在三棱柱ABC—A
1
B
1
C
1
中,侧棱与底面垂直,∠BAC=90°,AB=AC=AA
1
=2,点M,N分別为A
1
B和B
1
C
1
的中点.
(1)求异面直线A
1
B与NC所成角的余弦值;
(2)求A
1
B与平面NMC所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-18 02:37:49
答案(点此获取答案解析)
同类题1
直线
,
的方向向量分别是
,
,若
与
所成的角为
,直线
,
所成的角为
,则( )
A.
B.
C.
D.
同类题2
如图,平行四边形
所在平面与直角梯形
所在平面互相垂直,且
,
为
中点.
(1)求异面直线
与
所成的角;
(2)求平面
与平面
所成的二面角(锐角)的余弦值.
同类题3
三棱柱
中,
为
的中点,点
在侧棱
上,
平面
.
(1)证明:
是
的中点;
(2)设
,四边形
为正方形,四边形
为矩形,且异面直线
与
所成的角为30°,求两面角
的余弦值.
同类题4
已知正方体
,
为
的中点,则异面直线
与
所成角的余弦值为( )
A.
B.
C.
D.
同类题5
如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=
,∠ADC=90°.沿直线AC将△ACD翻折成△ACD',直线AC与BD'所成角的余弦的最大值是______.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用