刷题首页
题库
高中数学
题干
在四棱锥
中,
,
,
,
,
为正三角形,且平面
平面
.
(1)求二面角
的余弦值;
(2)线段
上是否存在一点
,使异面直线
和
所成角的余弦值为
?若存在,指出点
的位置;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-18 12:14:14
答案(点此获取答案解析)
同类题1
在三棱锥
中,
,点
为
所在平面内的动点,若
与
所成角为定值
,
,则动点
的轨迹是
A.圆
B.椭圆
C.双曲线
D.抛物线
同类题2
如图,在正四棱锥
中,二面角
为
,
为
的中点.
(1)证明:
;
(2)已知
为直线
上一点,且
与
不重合,若异面直线
与
所成角为
,求
同类题3
如图,正三棱柱底面边长为
.
(1)若侧棱长为
,求证:
;
(2)若
与
成
角,求侧棱长.
同类题4
如图,在三棱柱
ABC
-
A
1
B
1
C
1
中,侧面
AA
1
C
1
C
是矩形,平面
ABC
⊥平面
AA
1
C
1
C
,
AB
=2,
AC
=1,
,
.
(1)求证:
AA
1
⊥平面
ABC
;
(2)在线段
BC
1
上是否存在一点
D
,使得
AD
⊥
A
1
B
?若存在求出
的值,若不存在请说明理由.
同类题5
在直三棱柱
中,
,
,
为线段
上一点,
平面
.
(1)求证:
为
中点;
(2)若
与
所成角为
,求直线
与平面
所成角的正弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用